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A numerical technique, based on the boundary integral method, is developed to allow 
the modelling of unsteady free-surface flows at large Reynolds numbers in cases 
where the surface is contaminated by some surface-active compound. This requires 
the method to take account of the tangential stress condition at the interface and 
is achieved through a boundary-layer analysis. The constitutive relation that forms 
the surface stress condition is assumed to be of the Boussinesq type and allows the 
incorporation of surface shear and dilatational viscous forces as well as Marangoni 
effects due to gradients in surface tension. Sorption kinetics can be included in the 
model, allowing calculations for both soluble and insoluble surfactants. Application 
of the numerical model to the problem of bursting gas bubbles at a free surface shows 
the greatest effect to be due to surface dilatational viscosity which drastically reduces 
the amount of surface compression and can slow and even prevent the formation of a 
liquid jet. Surface tension gradients give dilatational elasticity to the surface and thus 
also significantly prevent surface compression. Surface shear viscosity has a smaller 
effect on the interface motion but results in initially increased surface concentrations 
due to the sweeping up of surface particles ahead of the inward-moving surface wave. 

1. Introduction 
The ability to model in a realistic manner physically occurring free-surface flows 

has many important engineering and biological applications. The boundary integral 
method used to model free-surface flows at high Reynolds numbers (Guerri, Lucca 
& Prosperetti 1981) provides an efficient, yet highly accurate technique in cases where 
the tangential stress component at the surface is small, for example at pure interfaces. 
However where surfactants are adsorbed onto the surface, this is not necessarily the 
case. Gradients in surface tension and surface viscous effects can give rise to large 
tangential stresses at interfaces. It would therefore be beneficial to be able to modify 
the boundary integral method to allow for the inclusion of more realistic surface 
properties. 

In this paper, we develop an extension to the boundary integral method which 
allows the specification of a tangential stress condition at large Reynolds numbers. 
We apply this to the problem of a gas bubble bursting at a contaminated free surface. 
The results are compared to those of Boulton-Stone & Blake (1993, hereinafter 
referred to as BSB), where a pure liquid was assumed. 

Several studies, both analytical and numerical, of the effects of surfactants have 
been concerned with the fundamental problem of calculating the flow field around 
a rising gas bubble for the case where surface tension is a function of the surface 
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concentration of surfactant (Levich 1962; Harper 1972). Indeed for dilute solutions 
with a small Weber number (so that the bubble can be assumed spherical), the 
increase in the drag coefficient due to the compression of surfactant at the rear of 
the bubble is now well understood for both large and small Reynolds numbers, and 
high and low surface activity (Harper 1974, 1988). For more concentrated surfactant 
solutions, the flow field itself must be found as part of the solution, thus rendering 
the problem nonlinear. Nevertheless, the observation by Savic (1953) of a stagnant 
region at the rear of the bubble surface in some cases allows theoretical calculation 
of the drag coefficients (Harper 1973). This case has been solved exactly, in terms of 
an infinite series of associated Legendre functions, by Sadhal & Johnson (1983). 

The effect of surface viscosity in steady bubble rise problems is unlikely to be of 
much interest since it is probably only going to be important at sufficiently large 
surface concentrations which render the surface immobile. However for unsteady 
problems of the kind studied numerically using techniques such as the boundary 
integral method, surface viscous forces can play a critical role in the determination 
of the surface and surrounding fluid motion. Simple unsteady problems such as the 
effect of surfactants on small-amplitude plane waves can be dealt with analytically. 
Many studies reported in the literature (Lucassen & van den Tempe1 1972; Avramidis 
& Jiang 1991; Lemaire & Langevin 1992; Johnson & Stebe 1994) relate theoretical 
models of unsteady flows to techniques for measuring surface viscous properties. 
In the bursting bubbles situation (see also BSB), used here as a case study, there 
is very strong surface compression during the moments immediately prior to the 
formation of the liquid jet. This surface compression can be seen by examining the 
significant calculated increase in the surface concentration of a passive surfactant in 
the otherwise pure liquid case (see 56). We therefore anticipate, and later verify, this 
surface concentration increase (as well as the large energy dissipation rates calculated 
by both BSB and Garcia-Briones & Chalmers 1993) as the jet forms, to be inhibited 
by a surface dilatational viscosity. In addition, surface dilatational viscosity may 
prevent or suppress jet formation. 

Boundary-layer approximations for the case of a stress-free interface have been used 
previously together with boundary integral methods. Using such techniques, Lundgren 
& Mansour (1988) were able to find the first-order correction to the normal velocity 
for large Reynolds numbers. This work was extended by BSB to enable the calculation 
of the tangential velocity perturbation. For most applications, including bursting and 
collapsing bubbles, the effect of these perturbations is only slight since the normal 
and tangential velocity perturbations are O(Re-’ ) and O(Re-’’2) respectively for large 
Reynolds number, Re. However, an effect is apparent for periodic motions over many 
oscillations, as in the case of the Lundgren & Mansour (1988) study of oscillating 
drops. 

If surfactants are present on a bubble’s surface it is no longer appropriate to 
assume that the tangential component of stress is zero. It is also erroneous to assume 
that the purely inviscid boundary integral method will necessarily give an accurate 
estimate of the true motion as in the case of a pure interface. In order to make 
progress, some form of boundary-layer analysis should be considered if we wish to 
use a boundary integral technique to solve a problem involving surfactant solutions. 
In the case where the surface stress terms due to the presence of the surfactant are 
much larger than the bulk viscous stresses at the interface, the method of Nadim, 
Kumar & Greenspan (1993), in which the tangential velocity is found through a 
balance of the tangential component of surface stresses either side of the interface, 
can be used. 
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In this paper we describe (see $04 and 5 )  a numerical technique based on the 
Boussinesq surface model. This allows us to take into account variations in surface 
tension (due to variations in surfactant concentration at the surface) giving rise to 
Marangoni effects, and surface viscous forces (shear and dilatational) which introduce 
a certain amount of rigidity to the surface. The method will handle both soluble and 
insoluble surfactants. To show the general applicability of the numerical method, we 
include a number of parameters in the following theoretical development. However 
in most practical situations we are going to be interested in only a few of the physical 
processes described by these parameters. 

Denoting all dimensional quantities by a superscript asterisk, the bulk diffusion 
coefficient, D', for the surfactant is almost invariably smaller than the kinematic 
viscosity, v*, so for a problem with large Reynolds number, 2U"a'/v' (U* and a' 
being the velocity scale and bubble radius respectively), the corresponding Peclet 
number, 2U*a'/D', will also be large. This means that there will exist a concentration 
boundary layer where the concentration adjusts from a uniform concentration away 
from the surface to some value near to the surface sublayer. 

In transporting surfactant from the bulk to the surface, there are two competing 
physical processes in operation. One is the diffusion from the bulk to the liquid 
near to the surface (i.e. to the sublayer within the boundary layer), the other is the 
adsorption to, and desorption from, the surface itself. If these two processes take 
place over differing timescales, the slowest of them will limit the rate of transport. 
In this case, the Peclet number is large so that diffusion is slow compared with the 
bubble burst. 

There is one special limiting case for the sorption rate. If the surfactant can 
be considered insoluble, i.e. adsorption is much faster than desorption, or both 
desorption and adsorption take place over a much longer timescale than the bubble 
burst, we may assume that the flux term in the equation for the transport of adsorbed 
surfactant will be zero. In this case, the surface concentration is effectively decoupled 
from the bulk concentration so that there is no need to find the bulk concentration 
as part of the solution. Otherwise we need to consider advection and diffusion of 
the dissolved surfactant in order to identify the flux from the liquid phase to the 
gas/liquid interface. 

The details of the derivation and implementation of the method used to incorporate 
surface viscous and Marangoni effects are described, in the context of the bubble 
bursting problem, in the following sections (&2-5). A discussion of the effects of 
some of the parameters and surface properties on the bursting of a gas bubble can 
be found in $6. 

2. Formulation 
2.1. Surfactant kinetics and dynamics 

Immediately before our calculations begin, we assume that the bubble rests in an 
equilibrium position where the upward buoyant force balances the downward force 
due to the surface tension in the film separating the bubble from the atmosphere 
above. As in BSB, we ignore the rupture of the film itself which takes place over a 
much smaller timescale than the subsequent motion of the bubble, the subject of our 
interest here. We start our calculations at time t' = 0 with the assumption that the 
film has completely ruptured, leaving a crater in the surface of the fluid, which then 
collapses under the influence of surface tension and gravity. 
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Since the bubble typically rests for some time before the film above the bubble 
thins to its critical thickness and ruptures (maybe of the order of seconds or longer 
depending on the surfactant properties), we make the assumption that the bulk and 
surface concentrations are initially in equilibrium (sorption processes take place on 
the order of s (Lin, McKeigue & Maldarelli 1991)). Further we assume, for the 
purposes of these calculations, that diffusion in the bulk and the surface will ensure 
that the initial bulk and surface concentrations are constants, CG and rl respectively. 
Initially, the fluid itself is taken to be at rest. 

In the model, sorption processes are governed by Langmuir kinetics so that the net 
flux to the surface is of the form 

j i  = -P*(r*) + Q*(r*, C'lo), 

where r' and C' are the surface and bulk concentrations, and 10 denotes evaluation 
at the interface. For 0 < r' d r;, the desorptive and adsorptive fluxes, P' and Q', 
are given by 

where r: is taken to be the maximum packing density for adsorbed surfactant, and 
kl and k2 are adsorptive and desorptive rate constants, respectively. 

At equilibrium, j i  = 0 and so r; (the surface concentration in equilibrium with C;, 
which for t' > 0 is also the bulk concentration at infinity) is given by the expression 

The surface tension, o*, is given by a surface equation of state, which we write in 
the form (Jensen & Grotberg 1992) 

where oi is the surface tension of the pure liquid, o& is the value when the surface is 
saturated, i.e. when r' = r;, and o1 is a function satisfying a(0) = 1 and o(1) = 0. 
For a bubble bursting in a pure liquid, preliminary calculations indicate that the 
surface fluid is compressed strongly as a result of the flow converging towards the 
axis of symmetry. We therefore expect surface surfactant concentrations to increase 
markedly for contaminated bubbles, and it seems likely that a nonlinear surface 
equation of state should be used. The precise form for depends strongly on 
the type of surfactant present, but here we assume the form given in Gaver & 
Grotberg (1990), 

(2.5) 
where 8(a) = (1 + ~ / c I ) ' / ~  - 1. The parameter CI governs the nonlinearity of the 
equation of state: as a becomes small, u* --+ o& for all r' > 0; as a becomes large, 
q(x )  + 1 - x. 

In order to describe the motion of the adsorbed surfactant, we employ a convection- 
diffusion equation for the surface concentration of surfactant, upon which the surface 
viscosities and surface tension depend. Mass conservation incorporating the flux from 
the bulk phase, j i ,  implies that this equation must be of the form 

q ( x )  = (a  + 1)(1+ O ( ~ ) X ) - ~  - a, 

-++'Vf.v' = D i V g 2 T * + j i ,  (2.6) 
DT * 
Dt' 
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where the symbol Vg is used to denote the surface gradient operator, and u* is the 
fluid velocity. The corresponding equation for the evolution of the bulk concentration 
is 

We assume that the stress jump at the interface is determined by a linear Boussinesq 
scheme (Slattery 1990). In this model, the stress tensor is written as the sum of the 
usual Newtonian bulk-phase stress tensor and the divergence of a surface stress 
tensor, linear in the surface velocity, which allows for surface viscous effects as well 
as the more familiar normal and tangential stresses due to surface tension. The 
two viscous parameters are the surface shear and surface dilatational viscosities, pi 
and icz respectively. The surface shear viscosity is defined analogously to bulk shear 
viscosity; the dilatational viscosity can be thought of as the coefficient of an additional 
surface tension proportional to the fractional rate of change of the surface area, i.e. 
A d  = ica(l/A*)(dA'/dt') (Adamson 1982) where A' is the surface area. 

The surface stress tensor is defined as (Slattery 1990) 

where I ,  = I - iiii is the surface identity, with it the outward-pointing normal to the 
interface, as shown in figure 1, and where 

Df = I,V,'.u' and E J  = ~{(Vfu').l, 2 +/,-(V~U')~}. 
For axisymmetric flow, (VJu')*I, is symmetric so that we can write EJ = (Vfu')-I,. 

2.2. Non-dimensionalization 
The lengthscale for the problem is the equivalent radius of the bubble defined as 
a* = (31/* /4~) ' /~  where V is the bubble volume prior to film rupture. We assume 
a general timescale, T' ,  and an associated velocity scale, U', given by U' = a*/T*,  
with pressures scaling as p ' V 2  where p* is the liquid density. 

As indicated above, values for the surface tension and the surface viscosities will 
be concentration dependent. The surface tension is scaled with respect to the surface 
tension of the pure liquid, CT;, whereas the surface viscosities (assumed zero for the 
pure liquid) are scaled with respect to the initial, equilibrium, values and are thus 
indicated by a subscript 0. 

In addition to the functional dependencies of the surface parameters on surface 
concentration, there are six independent, non-dimensional parameters to this problem. 
In order to define the fluid bulk properties the Morton number, M = gp'3v*4/ai3 
where g is the gravitational acceleration, is used. The bubble size is chosen via the 
Eotvos number, Eo = ( 2 ~ ' ) ~ p * g / a i .  The surface viscosities can be written in terms 
of the two parameters p, = ,~:~/2a*p'  and Pd = lc2/2a'pL., where p* = p'v' is the 
dynamic viscosity. 

The fifth and sixth parameters are Schmidt numbers, determining the amount of 
bulk and surface diffusion as ratios of the bulk viscosity to the respective diffusion 
coefficients: Sc = p*/D'p* and Sc, = pL./D3p'. The form of the equations is clearer 
if written in terms of the Reynolds and Peclet numbers: in terms of the above 
parameters, the Reynolds number is given by Re = 2a'p*U*/p* = (We2Eo/M)'I4;  
and the bulk and surface Peclet numbers by Pe = 2a'U*/D' = ReSc and Pe, = 

2a' U ' /  D: ReSc,. 
The Weber number, We = 2 ~ * p ' U ' ~ / a i ,  also appears in the equations of motion, 

but disappears once we decide upon a natural timescale due to the collapse of 
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a bursting bubble under the influence of surface tension (as we do here), T" = 

( p * ~ ' ~ / o ; ) ' / ~ ,  or for example to the acceleration of a bubble rising under the influence 
of gravity, T' = (a* /g) ' / ' ,  in which cases the Weber number becomes 2 or Eo/2 
respectively. In cases where the velocity scale, U' ,  is itself a parameter of the problem, 
it may be more convenient to express the gravitational body force in terms of a Froude 
number, Fr = U*2/2a*g, rather than as a ratio of Eotvos and Weber numbers. 

We scale bulk and surface concentrations with respect to C{ and ri respectively. 
This leads to the dimensionless flux being expressible as 

(2.10) 

where K = k; T' so that K-' represents the dimensionless desorption timescale, and 
rm = 1 +T;/ (C, 'k; /k; ) .  The quantity j,, must, in addition, be equal to the diffusional 
flux from the bulk, so that we also have 

(2.11) 

where h is defined as h = k; /a*k; .  If r: >> (k;/k;)C,'  then, from (2.3), ha' - ( f , ' /C{)  
so that h may be viewed as a non-dimensional adsorption depth. Also h-' is a measure 
of the solubility of the surfactant (Jensen & Grotberg 1993). However, boundary- 
layer theory (see below also) indicates that the order of magnitude of the dC/dn  term 
in (2.11) is Pe'/2 times the difference in the values of the bulk concentration at the 
boundary and outside the boundary layer. This suggests that the size of the flux, j,, 
is proportional to k - l ,  where k is the activity of the surfactant (Harper 1974), defined 
as k = h /&,  and 6, = is the non-dimensional concentration boundary-layer 
thickness. We therefore assume that we can ignore the flux term, thus decoupling the 
bulk concentration from the calculation, when k >> 1. In cases where the surfactant 
is considered to be soluble, (2.10) and (2.11) provide a boundary condition for the 
bulk concentration, coupling it to the surface concentration. 

In terms of non-dimensional quantities, the equation of state, (2.4), becomes 

G = om + (1 - g,)ol(r /r,). (2.12) 

The deviations of the surface viscosities from their equilibrium values are rep- 
resented by the coefficients ps and ti, so that, for instance, p, = 1 when r = 1, 
corresponding to the dimensional values of &, and r,t respectively. In the calcula- 
tions presented here, we assume (for a lack of any definite theory) that the dependence 
of surface viscosities upon surface concentrations is linear, so that ps = IC, = I-. The 
obvious alternative is to keep the surface viscosities constant, i.e. p, = ti, = 1. How- 
ever, this gives results that are graphically indistinguishable over much of the early 
motion, since high surface concentrations only occur as the liquid jet forms (see 96), 
from which time results differ only by a few percent. This being the case, the former 
choice, where surface viscosities are small when surface concentrations are small, 
seems more reasonable. 

Consideration of the sorption kinetics and the equation of state gives five additional 
dimensionless parameters: K ,  h, Too, o, and a ;  a total of 11, with the six mentioned 
above. 

2.3. Evaluation of boundary conditions 
For a pure system, the stress balance at a surface expresses the equality of the bulk 
stress in the liquid with the normal stress due to the pressure in the gas phase. In 
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FIGURE 1. Schematic showing the geometry of the bursting bubble problem. Some notation is 
marked on the diagram: the pressure pgas in the atmosphere, q in the liquid; Y, the interface; 9, the 
liquid; the surface and bulk concentrations r and C. Also shown are the surface-fitted coordinate 
system, which is based upon normal, tangential and azimuthal unit vectors, {ii, i, i}, and the radial 
unit vector, i, of a cylindrical polar coordinate system, ( r ,  z ,  0). 

order to handle contaminated interfaces (as mentioned in 91)  a surface stress term 
needs to be added. For normals pointing towards the gaseous phase, this condition 
takes the form 

-pgasA=A.S -v,.s,, (2.13) 
where pgus is the pressure on the gaseous side of the interface and S is the bulk stress 
tensor given by S = -ql+4Re-'E, q being the liquid pressure and E = ~{VV+(VU)~). 
In terms of dimensionless quantities, the Boussinesq surface stress tensor, given by 
(2.8), is 

S, = 4Re-l (2P,psE, + ( P d &  - Psps)D,) + 2We-'oI,, (2.14) 
with D, and E,y corresponding to their dimensional counterparts defined by (2.9). 

We now introduce an orthogonal, surface-fitted coordinate system, {h, 3,6}, (see 
figure 1 )  and write the boundary conditions given by (2.13), above, in a more 
convenient form. Components of vectors and tensors in these directions will be 
denoted by the appropriate subscripts: n, t or 8. Arc-length and normal derivatives 
are written a l a s  and d / d n  respectively. The cylindrical radial coordinate and unit 
vector are denoted by r and i ,  with z measured from the free surface in the vertical 
direction. 

The quantity V, * (p,E ,) = pL,V, * E ,  + (ap,/ds)i- E ,  which appears when (2.14) is 
substituted into (2.13) can be evaluated by first recognising that E ,  = iie,, + %ess, 
where err = i. Vv - i and e e ~  = ê  - Vv 6, so that 

In the above expression, 

ti(') 3 -;.vfi .; and 

(2.15) 

(2.16) 

with the total surface curvature defined as IC = -V, - 2  = ti(') + do). 
We also require the quantity V, - (p,D,7) = psV,.D, + (ap, /as) i -D, ,  together with 

a similar term involving the dilatational viscosity coefficient. Writing A = V,$ v(= 
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e,, + eee) and using the definition of the surface identity in the first equation of (2.9), 
we see that 

V,.(lsA) =I,.V,A - (V,*(iiA))d 

ad h 

= - t  + xiid. 
as 

(2.17) 

Likewise, we have 

(2.18) 
a. A 

as v, * ( Iso)  = --t + icAo. 

Finally, putting together (2.14), (2.15), (2.17) and (2.18) and using the identity 

(2.19) 

we find that the normal component of (2.13) is 

2 
We 

p (,(I) - (8) +Re (en, - s c l s  x )(et, - ese) - ~ d x , ( x ( ' )  + x('))(e,, + em))  . (2.20) 

-pgas = -q - -OK 

4 

and that the corresponding tangential component is 

(2.21) 

3. Background to the boundary integral approach 
In this section we describe briefly the boundary integral method that forms the 

backbone of the numerical technique described in $5. For more details on axisym- 
metric boundary integral methods applied to high Reynolds number flows, the reader 
should refer to Guerri et al. (1981), Taib (1985), or Blake, Taib & Doherty (1986, 
1987). 

The geometry for the problem is depicted in figure 1. On the free surface, 9, there 
is a surfactant surface concentration r ; in the fluid, 9, there is a bulk concentration 
C .  For the purposes of the numerical method, normals are taken as pointing towards 
the gaseous phase where the pressure, pgns ,  is taken as constant atmospheric pressure. 

Away from the boundary, the fluid flow is assumed irrotational. Together with 
the incompressibility assumption, this leads to the field equation being expressible as 
Laplace's equation, 

with the irrotational part of the velocity field given by u = V4. 
v24 = 0, (3.1) 

The Green's formula approach is used to formulate Laplace's equation as a bound- 
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ary integral problem. This involves using the integral equation 

where x E Y and the Green’s function is given by 

Numerical solution of (3.2) allows the normal velocity ( d # J / d n )  to be found and 
hence the bubble surface shape updated at each time step. In the absence of viscous 
effects, the pressure balance at the surface can be used in conjunction with the 
Bernoulli theorem, written in terms of a material derivative, to provide a means for 
updating the surface potential. This evolution equation is simply 

2 1 2  Eo 2 
= zlul - -z + - O K .  

Dt 2We We (3.4) 

If bulk and surface viscous forces are present, although the change in the normal 
velocities is apparently small (see 94, below), the perturbation to the tangential velocity 
is coupled to the inviscid surface motion through the Lagrangian time derivative term 
of (3.4) which, in addition, will include terms due to the altered normal stress balance, 
allowing the possibility of significant variation in the resulting surface motion. 

4. Boundary-layer approximation 
In order to take account of the additional boundary condition represented by the 

tangential stress balance, (2.21), we need to include an additional tangential velocity 
as a perturbation to the inviscid velocity field which is found as a solution to the 
boundary integral equation (3.2). Nadim, et al. (1993) developed one technique for 
doing this. Their approach was to ignore the bulk viscous stress terms and solve the 
tangential stress condition for the total tangential velocity at each time step. However 
this method assumes that the viscous stresses in the boundary layer are less than 
any surface tension and surface viscous forces. As the boundary-layer thickness is of 
order (see below), surface viscous forces dominate bulk viscous forces in the 
tangential stress condition, (2.21), when either P d  or Ps >> Re’’’. So the Nadim et al. 
method does not allow us to examine the case where only moderate surface viscous 
effects are present. In addition to this we might expect the flow on certain parts of 
the surface, namely far from the axis of symmetry, to be dominated by bulk viscous 
stresses. Indeed, for large r the following order-of-magnitude estimates can be derived 
for the inviscid part of the flow (which will drive any boundary-layer perturbation) 
ut = O ( I - ~ ) ,  u, = ?(rp3)  and I&), IC@) = 0(rP5) so 2.Vu - 2 ,  A-Vu .A and 0.Vu - 6 
are O(rP5) whereas t -Vu .A = A-Vu ‘ 2  = O ( r 4 )  as r + co (see BSB). In the normal 
stress condition, (2.20), the components of the surface rate-of-strain tensor are of 
equal order for all I so that the bulk stress term will be important for large Reynolds 
numbers only when the P d  and ps are O( 1).  However, the bulk viscous stress terms in 
the tangential condition, (2.21), will eventually dominate the surface viscous stresses 
for sufficiently large r, regardless of the values of Ps and Bd. Moreover, the method 
described is liable to break down if the balance with bulk viscous stresses is removed 
- the velocities produced when solving for the tangential velocity perturbation are 
found to increase as r approaches La,, the outward extent of the computational 
domain. 
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To proceed, we write the velocity field (Lundgren & Mansour 1988; BSB) as 

u = u + U ,  (4.1) 

where u = V$ is the irrotational part and U is a perturbation due to a boundary 
layer. Similarly, we decompose the pressure, 4, as 

4 = p + P ,  ( 4 4  

where p is the liquid pressure due to the irrotational flow and P is a perturbation. For 
uniqueness, we insist that all perturbations tend to zero as the edge of the boundary 
layer is approached. To leading order we need to find only U,  and u as, in the 
thin boundary layer of thickness 6, U,, << Ut and P << p ;  however in some cases a 
knowledge of U ,  and P is also required (see below). 

On using (4.1) and the fact that Vu is symmetric, we can write the tangential surface 
stress condition, (2.21), in a more convenient form, 

The boundary-layer equations can be derived using the surface-fitted coordinate 
system indicated above. We assume that the perturbation to the tangential velocity 
at the surface is, at most, of the same order as that of the irrotational component so 
that U, = O(1). The continuity equation implies that aU,,/an = O(1) and so, since 
U,, -, 0 as the edge of the boundary layer is approached, we must have U,, = O(6). 
Likewise, as U,  falls from 0(1) to 0 in the layer, we assume dU,/dn = 0(1/6). 

At this point we should mention that in reality, owing to the translational com- 
ponent present in the potential flow, a thin rotational wake can be expected to start 
to form beneath the bubble as it collapses and rises. Indeed, in the calculations of 
BSB a region of separated flow is apparent during the burst, immediately prior to 
jet formation. This being the case, a boundary integral method of the kind described 
here cannot completely solve the problem as would other, more computationally 
expensive, finite-element or finite-difference approaches, but it can be used to offer 
valuable insight into the effects of surface contaminants on free-surface flows such as 
occur during bubble burst. In the light of this, no attempt has been made to try to 
resolve the higher tangential derivatives of the tangential velocity which may even- 
tually develop near to the axis of symmetry as a result of a greater boundary-layer 
thickness there (Moore 1963). This would result in higher normal derivatives of the 
normal velocity and hence promote rapid movement of boundary-layer nodes away 
from the boundary (see $5 and (5.4), below). 

Provided that the surface coordinates are taken with respect to the solution to the 
full boundary-layer equations, we can subtract the Euler equation, satisfied by the 
irrotational part of the flow, from the Navier-Stokes equations for the complete flow. 
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This gives a tangential equation (retaining only the largest viscous terms), 

The Di/Dt term in (4.4) can be calculated using the fact that the interface of the 
bubble is a material surface so that i points in the direction of the tangent to 
a material element. Its rate of change thus has a term i - V v .  Subtracting the i 
component of this further ensures that i remains a unit vector. Thus we find that 

For an axisymmetric geometry, Di/Dt is entirely in the normal direction and so we 
can write 

In the boundary-layer equation, (4.4), this will be multiplied by an O(6) U ,  term and 
so can be ignored. 

The normal component of the boundary-layer equation is 

The DA/Dt term in (4.7) cannot be calculated as above, as the normal is not related 
directly to a material element but follows the tangent, lagging by 90". (Alternatively 
it can be derived by considering the rate of change of a unit element which rotates 
with the fluid but where changes due to straining motions are simply opposite 
to the corresponding changes for material elements.) Thus, using the fact that 
t*.(DA/Dt) = -A .(Di/Dt), we find 

DA 
Dt 
-- - -A .(VU)T +A(& . V u - i i ) .  

Again, for an axisymmetric geometry, this has only a tangential component and so 

DA 
Dt 
-- - - ( i - V v  .a ) ; .  (4.9) 

If the normal velocity perturbation is to remain of O(6) after unit time, the 
DU,/Dt term in the normal boundary-layer equation, (4.7), must be O(6) even 
though a convection term contributing to this rate of change is O(1) (Lundgren & 
Mansour 1988). This is the same as assuming that the boundary-layer thickness 
remains O(6) so that the O( 1) time variation at a fixed point in the fluid is due to the 
surface, and hence boundary layer, moving away from the point, through the O(1) 
normal derivative of U,, with an O(1) speed, u,. 

Using the tangential component of the boundary-layer equations, (4.4), we see that 
the pressure perturbation must fall to zero outside the boundary layer. The remaining 
terms of the normal boundary-layer equation, (4.7), thus imply that d P / d n  = O( 1) so 
that P = O(6) in the boundary layer. 

We can thus ignore dP/ds  in the tangential boundary-layer equation, (4.4). 
Further, a balance of viscous and inertia forces in (4.4) gives us the result that 
6 = O(Re-'I2). 
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becomes 
Taking the above arguments into account, the normal boundary-layer equation 

(4.10) 

To see when the pressure perturbation will be important, we consider different 
cases where P d  and f ls are of varying orders of magnitude, the greatest of which, for 
brevity, we denote p. Provided that we ignore effects of surface tension gradients, the 
tangential stress condition, (4.3), tells us that Ul,  at least for p = 0(6-'), is of order 
PS. For p >> 6-' we expect to approach the case of a tangentially rigid boundary, 
in which case the perturbation to the velocity must remain of the same order as the 
potential flow velocity which drives the flow and the subsequent generation of any 
rotational motion. In this latter case, the term on the left-hand side of (4.3) is small 
compared to the surface viscous terms, so that bulk viscous stresses can be ignored 
and, as in the numerical method of Nadim et al. (1993), the tangential velocity is 
determined by a balance of the surface viscous and surface tension gradient terms. 

The first case that we consider is p = 0(1) so that U,  = 0 ( 6 ) ,  and we find ourselves 
in a situation similar to that of a stress-free interface. In this case both the bulk 
and surface viscous terms, as well as the pressure perturbation in the normal stress 
condition, (2.20), will be O(S2).  This case is not particularly interesting for bursting 
bubbles as was seen in BSB, so we shall go on to examine the case 1 << p << d- l .  

Now, 6 << U, << 1 and examination of the normal stress condition shows that the 
pressure perturbation and the surface viscous terms are of order pa2, while the bulk 
viscous terms are only of order 6*. Clearly, the pressure perturbation and surface 
viscous terms also match in cases when p is of order 6-l. In the final case, we 
consider p >> 6-' with the assumption that U ,  remains O( 1). In this case the surface 
viscous terms dominate all other terms in the normal stress condition. From this brief 
discussion we see that the pressure perturbation term in the normal stress condition 
is required in all cases except when one of P d  or ps is much larger than 8-l. 

To solve for the bulk surfactant concentration in the case where the surfactant is 
soluble requires us to consider the corresponding concentration boundary layer. First 
we decompose the concentration into C = 1 + C', so that C' -+. 0 as the edge of the 
boundary layer is approached. The dimensionless form of (2.7) for the concentration 
perturbation, C', is 

(4.11) 

As in the case of the equation for the tangential velocity, the left-hand side of (4.11) 
is of order C' owing to the cancellation of convective and time derivatives. If the 
concentration boundary-layer thickness is 6,, then the right-hand side is of order 
Pe-'C'/6;. If the diffusive terms are to balance the convective terms, we must take 
6, = O ( S C - ' / ~ ~ ) .  So if Sc >> 1 the concentration boundary layer will be much smaller 
than the vorticity boundary layer. In order to allow the use of just one boundary-layer 
mesh (see below), we assume that D' = O(v'). This is perhaps somewhat unrealistic, 
as for most surfactants D' << v*, nevertheless it serves to illustrate the potential of 
the method. In particular, in the examples given below we take Pe = Re, i.e. Sc = 1. 

5 .  Solution scheme 
In order to solve this problem numerically, we need to keep track of the positions 

of boundary-layer nodes used to form a mesh adjacent to the interface. This mesh 
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can then be employed to allow the calculation of normal and tangential derivatives in 
the layer. For the stress-free surface condition, applicable to a pure interface, material 
normals to the surface remain perpendicular and straight (to first order in 6) as the 
surface deforms (see BSB). In the case where surfactants are present, the surface 
tangential stress is non-zero but can easily be calculated. Thus it is still possible to 
move boundary-layer points so that they remain fixed on normals to the surface, free 
only to move up and down these normals (see figure 2). To do this we need to change 
the velocity with which points are advected from u to some u* which is linear in 
the normal coordinate, v ] ,  and satisfies A * u = ii * u* and zero tangential stress at the 
interface. 

In order to find such a velocity, we first allow the tangential component of the 
velocity to vary, thus increasing accuracy and lessening the need for repositioning of 
surface nodes. That is we define u(e) = v,A + cut?, for some e E [0,1]. We now take 
the first two terms in the Taylor expansion of the velocity with respect to the normal 
coordinate, v] ,  and subtract a vector in the tangential direction proportional to the 
size of the tangential component of the bulk stress tensor evaluated at the interface, 

(5.1) U*(€) = U( . ) lo -v ] (A  .VU(€))I 0 +v]Z(i .VU(€) . i i  + A  . V U ( € ) . i ) l  0' 

U * ( € ) = U ( e ) I o + v ]  [(Z . V U ( € ) + ) i  -(A .VU(€)*A)A] 1 0 , 

This simplifies to 

(5.2) 

where (0  denotes evaluation at v] = 0. 

following particles moving with some velocity w ,  
For brevity, we use a notation similar to that of BSB to represent time derivatives 

DW a 
Dt at 
1 + w . v .  (5.3) 

We now carefully replace the material derivatives in (2.6), (3.4), (4.4) and (4.11) 
with ones following particles that move with velocity u*(e), to give us evolution 
equations for the surface concentration, the velocity potential, the perturbation to the 
tangential velocity and the bulk concentration perturbation respectively. For specific 
details regarding these equations, the reader is referred to the Appendix. 

Having derived the equations of motion in terms of an advection velocity u*(c), the 
heights of the boundary-layer nodes are governed by 

The form of (5.4) implies that all nodes along a normal will remain distributed in 
direct proportion to their initial spacing. Thus in computations we assume an initial 
constant spacing along each normal and store the position of only the outermost 
node. 

To solve for the motion of the bubble, incorporating the boundary-layer flow 
induced by the presence of a surfactant, we need to couple, in some way, the Navier- 
Stokes boundary-layer approximation with the tangential stress condition. In order to 
do this, we utilize the technique used by Nadim et al. (1993). The Nadim et al. method 
does not include a boundary layer, as indicated above, and hence does not use any 
field equations other than the Laplace equation. Their approach is to calculate the 
tangential velocity perturbation directly from a tangential boundary stress condition, 
which takes a form similar to (4.3) with the absence of the bulk viscous terms. This 
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FIGURE 2. The boundary layer is discretized using nodes along normals to the surface. The nodes 
are kept fixed on the normals by utilizing a linearized material derivative. 
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is then used in the normal stress condition and the Bernoulli and boundary integral 
equations are solved implicitly for the updated potential and normal velocity. 

The method that we employ here is as follows. 
(a )  At the beginning of each time step, the position of the surface and the potential 

and surface concentration at the surface are known. Also known are the values of 
the perturbations to the tangential velocity, Ut ,  and to the concentration, C', at nodes 
along normals to the surface, but not at the surface node where the normal meets the 
surface. In addition, the heights of the nodes on the normals are known. 

(b )  The boundary integral equations are solved for the normal velocity, d+/dn. 
(c) The tangential balance, (4.3), is solved for the value of the perturbation to 

the tangential Velocity, U,, at the surface. This requires that the derivative dU,/dn 
be approximated using some finite-difference approach. In practice a low-order (e.g. 
quadratic) Lagrangian polynomial can be used interpolate the unknown U ,  at the 
surface and a few of the known values of U ,  along the normals at nodes adjacent to 
the surface. 
The tangential derivatives at the surface are approximated using a cubic spline. 
Natural boundary conditions, i.e. d2Ut/ds2 = 0, are used for the spline at the axis of 
symmetry. For the case of a free surface, the boundary condition on the spline at the 
outermost reach, r = R,,, (typically 20), is to clamp dU,/ds based on the assumption 
that for large r ,  V , ( r )  = U,"a"(Rm,x/r)4, where U,"a" is the value of U, at r = R,,,. 
The resulting equations are linear. 

( d )  The surface values of the bulk concentration are found by applying a (quadratic) 
finite difference scheme to the two equations for the flux, (2.10) and (2.11). Unlike in 
(b), above, there are no arc-length derivatives in this equation so that the values of 
C'lo at each of the nodes can be found separately. 

( e )  Now that U ,  and C' are known throughout the boundary layer, the unsteady 
boundary-layer equations written in terms of the advection velocity a * ( € )  ~ see (A 1) 
and (A3) - can be used to find the changes in U,  and C' everywhere except at  the 
surface. At the same time (A2) is used to find the updates for the potential. Equation 
(5.4) is used to find the updates for the positions of the nodes along the normals. 
The perturbation to the pressure, P ,  in the dynamic boundary condition for the 
potential given by (A 2), is found by numerically integrating the normal boundary- 
layer equation, (4.10), from outside the boundary, where P is assumed zero, towards 
the surface. 

(f)  The tangential velocity perturbation, bulk and surface concentrations, surface 
potential, surface position, and boundary-layer node positions are updated using a 
time-stepping rule. 
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6. Results and discussion 

In this section we examine the results of the computational method developed in 
the previous sections to ascertain some of the effects that surfactants can have on 
the motion of a bursting bubble. The dependence of the bursting process upon the 
bubble size has been dealt with in detail, both experimentally (Newitt, Dombrowski & 
Knelman 1954; Garner, Ellis & Lacey 1954) and theoretically (BSB; Garcia-Briones 
& Chalmers 1993) on a number of previous occasions. We therefore concentrate our 
attention on one particular size of bubble (Eo = 0.3) and fix the bulk properties of 
the liquid (A4 = lo-" giving a Reynolds number of about 590), but allow the surface 
properties to vary. 

In order to distinguish the separate phenomena caused by surface tension gradients 
and by the two types of surface viscosity considered, we select just one of these three 
properties to be in effect in any single calculation. Whilst this is clearly not physically 
realistic, it gives a flavour of some of the behaviour that might be expected. We also 
neglect the effect of surface diffusion in all calculations on the assumption that the 
surface diffusion coefficient is comparable to bulk diffusion so that its effect will be 
small during the lifetime of the burst. 

We examine the effects that particular surface properties have on the evolution 
of the interfacial shape as a functions of time. Differences in the motion of the 
free surface between the case of a pure liquid and the case when surface forces 
are significant are of importance as they give us insight into the way in which the 
underlying fluid motion is altered through the changed surface stress condition. 

From the above discussion in 94, we expect that it will be the tangential motion 
which is affected most by the presence of surfactants. We expect some properties, 
particularly surface dilatational viscosity, to have the effect of damping surface 
compression. We therefore anticipate the surface concentration on the interface, 
both spatially and temporally, to be highly dependent on the values of the various 
parameters governing the behaviour of the surfactant. 

In BSB it was shown that large energy dissipation rates occur on the surface as 
a high-speed liquid jet is formed in the latter stages of the burst of a small bubble 
in a pure liquid. This work was motivated by the need to explain the observation of 
mammalian cell damage in sparged bioreactors in the presence of bursting bubbles. 
Cell death rates in this situation are observed to be greatly reduced by the addition 
of certain surfactants to the bioreactor medium. To ascertain whether surface viscous 
properties could bring about such a reduction in the damage caused by a bursting 
bubble, we too examine the maximum value of the viscous energy dissipation rate 
evaluated on the symmetry axis at the surface of the bubble as it bursts. 

A recent report in the cell culture literature (Garcia-Briones & Chalmers 1994) 
indicates that in rotational flows the energy dissipation rate alone is not sufficient to 
characterize the damage potential of the flow field. Indeed it has been proposed that 
the difference between the rate of rotation of the principal axes of the rate-of-strain 
tensor and the local rotation speed of a fluid element forms an additional term in 
the equation for the determination of the damage potential. Since significant vorticity 
develops near to the boundary of a bursting bubble when there is a strong surfactant 
present, we expect the energy dissipation rate at the surface to be a poor indicator 
of possible cell damage. We therefore examine only the maximum energy dissipation 
rate achieved at the bubble surface on the axis of symmetry, where fluid rotation is 
zero, and leave a more detailed examination of the cell damage capability of the flow 
field for a future study. 
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For an incompressible fluid, the viscous energy dissipation rate evaluated at the 
surface and made non-dimensional with respect to p'U'2/T* can be written (to 
leading order in as 

For a pure liquid or on the symmetry axis, the squared term in parentheses on the 
right of (6.1) can be taken to be zero owing to the vanishing tangential stress at the 
interface. 

Some of the calculations described below break down before any jet can form. 
This is due to boundary-layer thickening (see also BSB) which, as well as violating 
the assumptions of the model, if restricted to a narrow region can cause arc-length 
derivatives in the boundary layer to become large (see (A6)), leading to large rates 
of change of boundary-layer quantities such as the perturbation to the tangential 
velocity. When the size of the time step (chosen so as to ensure that the maximum 
changes in each of the variables 4, Ut,  r and C' are bounded by some prescribed 
values) falls below some small number ( say), the calculation is stopped. 

6.1. The pure interface 
In figure 3(a), the motion of the interface for the bursting of a pure bubble is shown. 
It can be clearly seen from the figure that there is a surface wave which runs down 
the collapsing bubble crater, moving towards the symmetry axis. This wave emanates 
from the rapid retreat of the circular rim at the top of the bubble crater (the site of 
connection of the bubble to the thin liquid film which ruptured immediately prior to 
the commencement of the calculation). When the wave reaches the axis, a high-speed 
liquid jet is forced upwards. 

We can quantify the compression of the surface during the burst if we plot the 
surface concentration of some dynamically inert material placed on the surface, as a 
function of arc-length for various times during the bursting process. This is done with 
the aid of (A4) for the case Pe, = GO. Figure 4 shows the evolution of this surface 
concentration profile as the bubble bursts. A ring of high concentration forms as the 
wave mentioned above compresses the surface fluid as it passes along. 

Well ahead of the surface concentration wave on figure 4(a, b), the concentration 
increases steadily as a result of the almost spherical collapse of the lower portion of 
the bubble surface (see figure 3 a ) .  

The concentration on the compression wave itself rises rapidly as it moves inward 
prior to jet formation. During jet rise, the surface concentration on the axis of 
symmetry exceeds its original value by a factor of almost 200 (see table 1, below). As 
the jet continues to rise, the local surface area will slowly increase again causing the 
surface concentration to fall slightly (see figure 7b, below) before a droplet is pinched 
Off.  

Just in front of the compression wave is a small area of expansion where, for 
figure 4(a-c), the surface concentration remains approximately equal to 1. Therefore, 
until the jet is about to form, the rate of expansion due to the surface wave almost 
balances the net compression resulting from the spherical collapse of the bubble 
crater. Immediately prior to jet formation, as the front of the surface wave reaches 
the symmetry axis, this is no longer the case and the surface expansion dominates for 
a short while, causing the surface concentration to drop below 1 in figure 4(d) (see 
also figure 7b). 
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FIGURE 3. The surface shape evolution for a small bubble, with Eo = 0.3, for various surface 
properties: (a )  pure, inviscid calculation, ( b )  low dilatational viscosity ( f i d  = lo), ( c )  moderate 
dilatational viscosity ( B d  = SO), ( d )  surface tension gradients (c( = 0.5, rm = 12, om = 0.1) for an 
insoluble surfactant. In each case the time interval between frames is 0.2 and, for ( b )  onwards, the 
Morton number is lo-" 

Behind the surface wave is a second ring of low concentration due to the expansion 
of the surface corresponding to the radially outward motion of the rim of the bubble 
crater. As the rim widens, due to surface waves moving in both directions, so does the 
low-concentration ring. Owing to the overall flattening of the surface coupled to the 
surface compression near to the axis of symmetry, the arc-length position of the far 
end of the low-concentration ring does not alter much as time proceeds, even though 
reference to figure 3(a)  shows a surface wave moving away from the symmetry axis. 

6.2. The effect of surfactants on the shape evolution 
Figure 3(b-d) shows the shapes of the free surface for bursting bubbles with various 
types of surface property. 

We first examine the effect of surface dilatational viscosity which is depicted in 
figure 3(b,c). For the case of a low dilatational viscosity ( P d  = 10, figure 3 b )  an 
examination of the early motion (particularly the second frame) indicates the surface 
wave seen in the pure case to be less clearly defined, indicating a damping effect. Jet 
formation itself requires a certain amount of surface expansion which is resisted by 
the dilatational viscosity. The jet resulting from the convergence of the wave on the 
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FIGURE 4. The evolution of surface concentration of an inert material as a function of arc-length 

for an otherwise pure bursting bubble. 

axis of symmetry is thus initially slower than in the pure liquid case. The jet appears, 
however, to be narrower at its tip with the bulk of the rising fluid remaining in its 
much broader base. 

The case when dilatational viscosity is moderately large ( P d  = 50, figure 3 c )  is 
initially similar, with a slightly weaker surface wave. Later on, a jet starts to form 
although it is noticeably slower and the energy lost due to the surface dilation during 
its inception prevents a sharp jet tip from forming. 

For the case of surface shear viscosity, there is very little difference in the early 
motion as compared with the pure case, except that the surface wave is damped 
slightly. Unfortunately the calculation breaks down before any jet can be formed. The 
method fails for this case - where it succeeded for the dilatational viscosity case, for 
example - since, according to (5.4), the boundary-layer thickness increases at a rate 
proportional to du,/dnl,. Conservation of mass implies that this rate is just -V, u, a 
term which appears on the right-hand side of the surface transport equation, (A4). 
We shall see later ($6.3) that surface dilatational viscosity and the presence of surface 
tension gradients inhibit surface compression and so in these cases the method can 
continue past jet formation. Surface shear viscosity alone does not prevent significant 
surface compression thus resulting in boundary-layer thickening. 

We consider two cases where surface tension is assumed to be a function of the 
surface concentration of surfactant : when the surfactant is considered insoluble and 
when it is considered soluble. For the case where the surfactant is insoluble, we 
expect the surface pressure to increase near the bottom of the bubble thus creating 
a resistance to further surface compression. The surface motion for the case where 
om = 0.1, rm = 12 and c1 = 0.5 is shown in figure 3 ( d ) .  Owing to the surfactant's 
effect on the surface tension, the initial configuration is slightly different from that 
shown previously in figure 3(a-c). In itself this makes very little difference to the 
subsequent motion (see BSB), although the changed surface tension alters very slightly 
the timescale over which the burst occurs. 
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FIGURE 5. The change in height of the node on the symmetry axis during (a) the early motion 
and ( b )  jet formation of a bursting bubble plotted as a function of time for various cases. (For a 
quantitative description of the terms used see table 1.) 

For insoluble surfactants the evolution of surface shape appears to be similar to 
that in the case of a low dilatational viscosity. The inward-moving capillary wave is 
again damped, but the jet is narrower and so faster. There is very little difference 
apparent between cases when the surfactant is soluble (with h = 0.1, K = 10) and 
when it is insoluble, so we plot only the insoluble case. 

In order to see more clearly the effects of these surface properties, figures 5(a) and 
5(b )  show the change in height of the node on the axis of symmetry for various cases, 
during the early motion and subsequent jet formation respectively. 

It it clear from figure 5(a) that the effect of dilatational viscosity is to retard the 
upward motion of the underside of the bubble. This can be explained by reference 
to figure 3. In all cases, it seems as though the lower portion of the bubble crater 
remains spherical and relatively undisturbed until the surface wave reaches it. We can 
therefore think of the early motion in terms of the isotropic collapse of a spherical 
cavity under the action of surface tension, for the case where the pressure inside is 
constant and equal to that of the far field. In order to model the early bubble burst 



250 J .  M .  Boulton-Stone 

1 .o 

0 2 4 0  2 4 0  2 4 
Arc-length Arc-length Arc-length 

FIGURE 6. The evolution of surface concentration as a function of arc-length for contaminated 
bursting bubbles (- - -, f id  = 50; .---, fi  s -  - 50; -. - .-, c1 = 0.5, Tm = 12, 0, = 0.1, insoluble; 

, a=0 .5 ,Tm= 12,am=0.1,soluble (h=O. l ,K =lo)). 

in this way we would also need to consider the force of surface tension which pulls 
the bursting bubble upwards towards the flat part of the free surface. 

For the case of low surface dilatational viscosity, where a strong jet forms, the 
initial rise of the jet is much less rapid than that of the jet in the pure bubble 
case. Jet formation also occurs later than for the pure liquid case. The fact that 
the jet occurs only when the inward-moving surface wave converges on the axis of 
symmetry is also a factor that delays the inception of the weak jets of the moderate 
and large dilatational viscosity cases. These cases, as shown in figure 5(a),  exhibit 
slower spherical collapse thus both lessening the amplification of the surface wave 
and increasing the distance that it has to travel. 

The effect of surface tension gradients is very similar to that of surface dilatational 
viscosity: surface collapse is slower and the initial jet formation is much less rapid 
than in the pure case. The jet formation is again slightly later which is partly due 
to the smaller surface tension and thus longer timescale as mentioned above. Since 
the jets are thinner they are accelerated to higher velocities than in the pure case. In 
both the insoluble and soluble cases surface tension slows the jet after a short time, 
but due to the slightly greater surface concentration and thus lower surface tension 
in the insoluble surfactant case, this deceleration takes place more slowly than in the 
soluble case which follows fairly closely the curve for low dilatational viscosity. 

Since surface shear viscosity has no effect for spherically symmetric motions, the 
finding, shown in figure 5(a), that the depth of the bottom of the bubble is altered 
very little by even a high surface shear viscosity is not unexpected. Prior to the 
calculation breaking down, the rate of rise of the bubble base decreases and then 
increases sharply as a jet is about to form. This is similar to what happens for the 
case of a pure interface (see figure 5a, b) and is explained in BSB, but it occurs earlier. 

6.3. The eflect of surfactants on the tangential surface motion 
Although surfactants have been shown to have some effect on the motion of the bulk 
fluid during a bubble burst, the greatest effect will be at the surface. For moderate 
and large surfactant strengths, the boundary layer will allow significant slip between 
the tangential velocity of the bulk fluid and the tangential velocity at the surface. 
This effect is thus largely unseen in previous figures. 

To appreciate the changes that occur in the surface motion we examine the surface 
concentration for various cases and compare it to the surface concentration for the 
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burst of a pure bubble. Thus we hope to indicate the effect of surface viscosity and 
surface tension gradients in preventing surface compression. 

Close comparison of figure 6 to figure 4 shows that the concentration ahead of the 
converging surface wave in the case where there is moderate dilatational viscosity is 
very slightly higher than in the pure case. This is verified by examination of figure 7 ,  
below, which indicates that this effect is more striking for low surface dilatational 
viscosity where the surface concentration exceeds that on the pure interface until jet 
formation. This apparent contradiction with the observation that the bubble crater 
itself is seen to collapse slower when there is dilatational viscosity can be explained 
by the fact that surface dilatational viscosity will act so as to diffuse the higher 
surface compression caused by the advancing surface wave itself. The damping of 
this compression is seen clearly in figure 6. The effect of increasing the surface 
dilatational viscosity so that bulk viscous forces are comparatively small is to create 
an almost rigid surface so that the resultant compression is very small throughout 
the surface. Nevertheless even for the high dilatational viscosity the concentration on 
the symmetry axis exceeds that of the pure case for a short time. 

In problems where the free surface can be considered flat to leading order, such 
as in the case of linearized surface waves, the ti(@) curvature coefficient of (2.20) and 
(2.21) is zero. Thus shear and dilatational viscous terms are identical and their effects 
cannot be distinguished. However when there is a large azimuthal curvature, as is the 
case along much of the surface of a bursting bubble, surface shear viscosity plays a 
quite different role. For nearly cylindrical surfaces, where the radius of the cylinder is 
of order unity, the coefficient it-(@ will be very small whereas ti(’) = O(1). This means 
that the ?.Vu .A term in (4.3) will determine the effect of surface shear viscosity. 
From (4.6), we see that the effect of surface shear viscosity in this case will be to act 
to prevent the change in direction of the tangent at a surface particle. 

Surface shear viscosity also has a slight damping effect on the concentration wave 
but, as with dilatational viscosity, it increases the surface concentration near the 
symmetry axis during the early motion well above that of the pure case. This seems 
to be a result of the shear viscosity preventing to some extent surface particles from 
going through the region on the surface in front of the surface wave where the rate 
of change of the tangent direction is large. The result is that the surface particles are 
swept along ahead of the wave. Indeed, from figure 6, the concentration behind the 
wave is quite small in comparison to most other cases. 

The effect of surface tension gradients due to variations in surface coverage through 
compression and dilation of the surface is to impart a certain amount of elasticity 
to the surface fluid. This is particularly true in the case of insoluble surfactants, 
where the only way to relax a compressed surface is through a corresponding surface 
dilation. When the surfactant is soluble, relaxation of increased surface concentrations 
on compressed regions is possible through fluxes of adsorbed material into the bulk 
fluid. In this case, gradients in surface tension will give rise to forces similar to 
those due to surface dilatational viscosity; the surface stress can be considered to be 
dependent on the rate at which a surface is compressed or dilated. Indeed, in many 
studies (Lucassen & van den Tempe1 1972) the surface dilatational viscosity has been 
defined in these terms. However Avramidis & Jiang (1991) call this an ‘apparent’ as 
opposed to an ‘intrinsic’ dilatational viscosity, and point to the consequent difficulty 
in experimentally isolating the intrinsic value. 

Comparison of figures 4 and 6 shows that in the case of surface tension gradients, 
although there is damping of the compression wave, it is less noticeable than for the 
dilatational viscosity. Figure 7(a)  also indicates that the concentration on the axis 
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FIGURE 7. The surface concentration on the axis of symmetry as a function of time for (a) the early 
motion prior to jet formation and (b)  the later motion during and after jet formation for various 
surface conditions. For a quantitative description of the terms see table 1. 

remains below that of the pure case due to the fact that the compression wave, which 
occurs as a result of the surface elasticity imparted by the surface tension gradients, 
does not reach the axis until the jet is formed. However, the effect of the slight surface 
elasticity is seen in the gradual widening of the concentration wave in these cases in 
figure 6 as compared to figure 4. There is little difference between the cases of soluble 
and insoluble surfactants although in the soluble case the surface concentration is 
slightly lower. 

An increase in surface concentration occurs at the axis of symmetry when a jet 
forms. From figure 7(b) ,  we see that in two cases, pure liquid and moderate surface 
shear viscosity, the concentration increases quite suddenly as a jet forms, but before 
this increase there is a sharp decrease. This corresponds to the expansion region, 
which moves ahead of the wave of high concentration in these cases (figures 4 and 
6) ,  reaching the axis of symmetry. Owing to surface elasticity when surface tension 
gradients are included, the low concentration in front of the high-concentration wave 
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Surface property 

Pure liquid 
Low surface dilatational viscosity (ad = 10) 
Moderate surface dilatational viscosity ( / I d  = 50) 
High surface dilatational viscosity (Pd = 300) 
Low surface shear viscosity (as = 10) 
Moderate surface shear viscosity (/Is = 50) 
High surface shear viscosity (as = 300) 
Surface tension gradients (a, = 0.1, roc. = 12 and LY = 0.5) 
As above with soluble surfactant ( K  = 10, h = 0.1) 

Energy Surface 
dissipation rate concentration 

390 
18 
19 
15 
13 
22 

280 
98 
96 

180 
4.2 
2.3 
1.3 
5.3 
5.4 
5.1 

1.3 
11 

TABLE 1. Maximum values of the dimensionless viscous energy dissipation rate evaluated at the 
intersection of the surface and the symmetry axis and dimensionless surface concentration for 
various surface properties. (In all runs, Eo = 0.3 and M = lo-”.) In cases involving surface surface 
shear viscosity, the calculation breaks down before any jet can be produced. 

vanishes before it reaches the axis, so that the fall in concentration is not observed. 
Here, as in the other cases plotted, the increase in surface concentration occurs 
steadily, over a longer timescale. 

The effect of solubility is also clearly seen in figure 7. The surface concentration is 
slightly lower when surfactant desorption is included. 

The maximum surface concentrations and surface energy dissipation rates occurring 
during the bursts are shown in table 1. This shows the maximum concentrations to be 
much lower in all cases involving dilatational viscosity and surface tension gradients. 
With dilatational viscosity, the energy dissipation rates are also smaller and this 
reflects the less violent flows occurring during jet production which we have seen in 
previous figures. 

Note that for the particular parameters considered, the surface concentration for 
the insoluble surfactant where surface tension depends upon surface concentration 
comes close to the maximum value, rE, for which the surface equation of state, 
(2.12), is valid. There is no obvious way in which it can be decided a priori whether 
a calculation with a particular set of parameters will violate this condition. If it is 
found that r exceeds rm during a calculation, then a more sophisticated equation of 
state is needed for such a case. 

From table 1, the effect of surface shear viscosity is not entirely clear owing to 
the breakdown of the calculations as a jet is about to form. The many similarities 
between these calculations and that for the pure case, however, lead us to believe that 
the maximum values listed in the table may be significantly below what would have 
been obtained had the calculations run further. 

Significant reductions in energy dissipation rates are also found in cases where 
surface tension gradients are considered. The maximum surface energy dissipation 
rates at the symmetry axis are approximately one quarter of that in the pure case. 
This is a real effect and is not just a consequence of the increased apparent timescale 
mentioned above. The initial surface tension changes by a factor of 0.86 with respect 
to the pure interface so that we would expect the rate of energy dissipation to decrease 
by a factor of just 0.93. 

The effect of decreasing the adsorption depth, h, in problems where surfactant 
solubility is considered is to further increase the flux from the surface as the interface 
contracts. However, (see figure 8) each desorbed unit of surface material now 
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lo* 1 

- - K=100, h=0.01 
.. .. K =  10, h = 0.01 

I 
I 1 I I I 

0.1 0.2 0.3 0.4 0.5 

Time 
FIGURE 8. The bulk concentration evaluated at the surface on the axis of symmetry as a function 

of time for different values of the desorption rate, K ,  and adsorption depth, h. 

corresponds to a lower bulk concentration when in solution; thus the rate of increase 
of bulk concentration is lower. From (2.10) and (2.11), the rate of increase of bulk 
concentration depends on the product Kh.  Indeed calculations indicate that when K h  
is kept constant, the bulk concentrations evaluated at the surface are asymptotic as 
t -+ 0. For times much larger than the smaller value of K - * ,  the bulk concentration 
for the more soluble case increases less rapidly than in the more soluble case. 

7. Conclusions 
We have developed a numerical technique, based on the boundary integral method, 

to allow the inclusion of a tangential surface stress condition through a boundary 
layer at high Reynolds numbers. We have applied this to the problem of a gas bubble 
bursting at a free surface in the presence of surfactants. 

From the calculations made in just a few specific examples, we see that the surface 
motion, particularly during jet formation is highly dependent on surface properties. 
The surface concentration wave resulting from the inward-moving surface wave is, 
as expected, damped most significantly by surface dilatational viscosity, although 
also by surface elasticity. Unlike in the pure case, the rise in surface concentration 
is steady and slow. In addition, the formation of a high-speed liquid jet and the 
associated large energy dissipation rate during its formation can be prevented by a 
moderate surface dilatational viscosity. In the surface shear viscosity case, owing to 
the breakdown of the calculations prior to jet formation, there is little evidence of an 
effect on the surface shape evolution, but an increase in the surface concentration of 
surfactant near to the symmetry axis during the early motion is clearly apparent. 

In relation to the mammalian cell damage problem mentioned briefly above, the 
significantly lower energy dissipation rates on the surface of a bursting bubble at the 
symmetry axis in many of the examples discussed indicate that those cells adhering 
to the bubble may not experience the large rates of strain during jet formation 
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which they would have done in a pure liquid. Although the precise properties of the 
surfactants used in practical bioreactor situations are not at present known, we can 
see from the calculations presented in this paper how they may result in a significant 
reduction in cell death rates as is observed in practice. 
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Appendix. Evolution equations for the boundary layer 
In this Appendix we derive explicit forms for the equations used to calculaie rates 

of change of boundary-layer and surface quantities in terms of the operator Du ("/Dt, 
which was introduced in $5. 

From (4.4), the tangential perturbation velocity satisfies the following equation to 
leading order in 6:  

It is important to point out that, even though we are not calculating U,,, (A 1) does 
give a good approximation to the rate of change of U,. In neglecting U,, we lose a 
term U,,aU,/an which can be of order 1 for large values of pS and P d .  However, since 
we are also not including the perturbation to the normal velocity when we move the 
surface or boundary-layer nodes, ( A l )  is correct, even though there is a small error 
in the surface motion. 

For the dynamic condition, (3.4), used for updating the potential on the surface, 
we similarly find 

DU*('"O4 1 Eo 2 
= U' (U*(f) - p) - -z + P + - - (TIC  

Dt 2 We We 
4 

Re 
-- (enn - Psps(lc(') - K (') )(ett - em) - Pd%(x(t) + ~ ( ' ) ) ( e t t  + e ~ ) )  , (A 2) 

where u*(e)Io is simply u,loh + eutlo; to leading order in 6. The value of the pressure 
perturbation, P ,  at the surface can be calculated using the normal boundary-layer 
equation, (4.10). 

The boundary-layer perturbation of the bulk concentration is updated using (4.1 1) 
which, in terms of the advection velocity u*, becomes 
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becomes 
Likewise, the convection-diffusion equation for the surface concentration, (2.6), 

In order to determine the value of dUn/dnia in the equations for the evolution of 
U ,  and C’, (A 1) and (A 3), the continuity equation, which can be written in the form 

is used. The appropriate limiting form is used on the axis of symmetry, namely 
replacing the right-hand side by -2dU,/ds + O(6). To find UnIO - U,, we utilize the 
fact that d(U,lo - U,)/dn = -aU,/dn and clearly ( U , ~ O  - U,) = 0 at g = 0, and 
integrate up through the boundary layer. 

Care must be taken when calculating arc-length derivatives at points away from 
the boundary. This happens in (A 1)  and (A 3 )  for U,  and C’. A cubic spline will allow 
interpolation of the values of U,  (say) at the j th node along each of the normals with 
respect to the surface arc-length. The error in the arc-length itself, resulting from 
the j th node being situated at a finite distance from the surface, is of order 6 and 
so can be ignored. However the fact that dU,/dn = 0(1/6) means that any small 
variations in the heights of the j t h  nodes in moving from one normal to the next 
are significant. Thus we write derivatives with respect to s, the arc-length parallel to 
the interface with q fixed (subject to the O(6) error mentioned above), in terms of 
arc-length derivatives obtained by fitting a spline to the stored values of U ,  along the 
‘material’ line corresponding to fixed j ,  
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